领取MOLI红包


Pytorch中的学习率衰减及其用法详解

发布日期:2025-01-03 17:41    点击次数:126

Pytorch 学习率衰减及其用法 学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy。 Pytorch中有两种学习率调整(衰减)方法: 使用库函数进行调整; 手动调整。 1. 使用库函数进行调整: Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现。pytorch提供的学习率调整策略分为三大类,分别是: (1)有序调整:等间隔调整(Step),多间隔调整(MultiStep),指数衰减(Exponential),余弦退火(CosineAnnealing); (2)自适应调整:依训练状况伺机而变,通过监测某个指标的变化情况(loss、accuracy),当该指标不怎么变化时,就是调整学习率的时机(ReduceLROnPlateau); (3)自定义调整:通过自定义关于epoch的lambda函数调整学习率(LambdaLR)。 在每个epoch的训练中,使用scheduler.step()语句进行学习率更新,此方法类似于optimizer.step()更新模型参数,即一次epoch对应一次scheduler.step()。但在mini-batch训练中,每个mini-bitch对应一个optimizer.step()。即用法如下: (1) 等间隔调整学习率 StepLR 每训练step_size个epoch,学习率调整为lr=lr*gamma. 以下内容中都将epoch和step对等,因为每个epoch中只进行一次scheduler.step(),实则该step指scheduler.step()中的step, 即step_size指scheduler.step()进行的次数。 参数: optimizer: 神经网络训练中使用的优化器,如optimizer=torch.optim.SGD(...) step_size(int): 学习率下降间隔数,单位是epoch,而不是iteration. gamma(float): 学习率调整倍数,默认为0.1 last_epoch(int): 上一个epoch数,这个变量用来指示学习率是否需要调整。当last_epoch符合设定的间隔时,就会对学习率进行调整;当为-1时,学习率设置为初始值。 (2) 多间隔调整学习率 MultiStepLR 跟(1)类似,但学习率调整的间隔并不是相等的,如epoch=10时调整一次,epoch=30时调整一次,epoch=80时调整一次… 参数: milestone(list): 一个列表参数,表示多个学习率需要调整的epoch值,如milestones=[10, 30, 80]. 其它参数同(1)。 (3) 指数衰减调整学习率 ExponentialLR 学习率呈指数型衰减,每训练一个epoch,lr=lrgamma*epoch,即 参数: gamma(float):学习率调整倍数的底数,指数为epoch,初始值我lr, 倍数为 其它参数同上。 (4) 余弦退火函数调整学习率: 学习率呈余弦函数型衰减,并以2*T_max为余弦函数周期,epoch=0对应余弦型学习率调整曲线的,epoch=T_max对应余弦型学习率调整曲线的eta_min处,随着epoch>T_max,学习率随epoch增加逐渐上升,整个走势同cos(x)。 参数: T_max(int): 学习率下降到最小值时的epoch数,即当epoch=T_max时,学习率下降到余弦函数最小值,当epoch>T_max时,学习率将增大; eta_min: 学习率调整的最小值,即epoch=T_max时,eta_min, 默认为0. 其它参数同上。 (5) 根据指标调整学习率 ReduceLROnPlateau 当某指标(loss或accuracy)在最近几个epoch中都没有变化(下降或升高超过给定阈值)时,调整学习率。 如当验证集的loss不再下降是,调整学习率;或监察验证集的accuracy不再升高时,调整学习率。 参数: mode(str): 模式选择,有min和max两种模式,min表示当指标不再降低(如监测loss),max表示当指标不再升高(如监测accuracy)。 factor(float): 学习率调整倍数,同前面的gamma,当监测指标达到要求时,lr=lr×factor。 patience(int): 忍受该指标多少个epoch不变化,当忍无可忍时,调整学习率。 verbose(bool): 是否打印学习率信息,print( 'Epoch {:5d} reducing learning rate of group {} to {:.4e}.'.format(epoch, i, new_lr), 默认为False, 即不打印该信息。 threshold_mode (str): 选择判断指标是否达最优的模式,有两种模式:rel 和 abs. 当threshold_mode == rel, 并且 mode == max时,dynamic_threshold = best * (1 + threshold); 当threshold_mode == rel, 并且 mode == min时,dynamic_threshold = best * (1 - threshold); 当threshold_mode == abs, 并且 mode == max时,dynamic_threshold = best + threshold; 当threshold_mode == abs, 并且 mode == min时,dynamic_threshold = best - threshold; threshold(float): 配合threshold_mode使用。 cooldown(int): “冷却时间”,当调整学习率之后,让学习率调整策略冷静一下,让模型在训练一段时间,再重启监测模式。 min_lr(float or list): 学习率下限,可为float,或者list,当有多个参数组时,可用list进行设置。 eps(float): 学习率衰减的最小值,当学习率的变化值小于eps时,则不调整学习率。 (6) 自定义调整学习率 LambdaLR 为不同参数组设定不同学习率调整策略。调整规则为: 在fine-tune中特别有用,我们不仅可以为不同层设置不同的学习率,还可以为不同层设置不同的学习率调整策略。 参数: lr_lambda(function or list): 自定义计算学习率调整倍数的函数,通常时epoch的函数,当有多个参数组时,设为list. 其它参数同上。 例: 2. 手动调整学习率: 什么是param_groups? optimizer通过param_group来管理参数组.param_group中保存了参数组及其对应的学习率,动量等等.所以我们可以通过更改param_group['lr']的值来更改对应参数组的学习率 上面第一个例子中,我们分别为 model.base 和 model.classifier 的参数设置了不同的学习率,即此时 optimizer.param_grops 中有两个不同的param_group: 每一个param_group都是一个字典,它们共同构成了param_groups,所以此时len(optimizer.param_grops)==2,aijust_learning_rate() 函数就是通过for循环遍历取出每一个param_group,然后修改其中的键 'lr' 的值,称之为手动调整学习率。 第二个例子中len(optimizer.param_grops)==1,利用for循环进行修改同样成立。 如果想要每次迭代都实时打印学习率,这样可以每次step都能知道更新的最新学习率,可以使用 它返回一个学习率列表,由参数组中的不同学习率组成,可通过列表索引来得到不同参数组中的学习率。 如何在 PyTorch 中设定学习率衰减(learning rate decay) 很多时候我们要对学习率(learning rate)进行衰减,下面的代码示范了如何每30个epoch按10%的速率衰减: 很多时候我们要对学习率(learning rate)进行衰减,下面的代码示范了如何每30个epoch按10%的速率衰减: 什么是param_groups? optimizer通过param_group来管理参数组.param_group中保存了参数组及其对应的学习率,动量等等.所以我们可以通过更改param_group[‘lr']的值来更改对应参数组的学习率。 以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。